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Abstract--In this paper, flow of viscous fluids across an array of solid and porous circular cylinders, which 
represents a porous media, is explored experimentally. The idealized array or bed of cylinders, which 
models tows and fibers in a fiber preform used in composites processing, was unidirectional consisting 
of either solid circular rods or porous circular bundles. By measuring the flow rate and pressure drop 
across this bed of cylinders, we characterized the transverse permeability of the model porous media. In 
beds with porous bundles, the volume fraction inside the bundles ranged from 60 to 75% by packing 50~0 
nylon fibers into 6.35 mm diameter holes. Both Newtonian and shear thinning fluids were used. These 
fluids were pumped through the medium such that the flow was perpendicular to the fiber axes. Once the 
fiber bed was fully saturated, the permeability was determined with the aid of Darcy's law. For the solid 
rods, the experimental results compare well with the asymptotic model recently developed by Bruschke 
& Advani for generalized Newtonian fluids. In addition, a heterogeneous fiber bed was constructed, 
consisting of fiber bundles in a regular array. During the filling stage, the progress of the flow front through 
the heterogeneous fiber beds was observed and the flow-induced void formation inside the fiber bundles 
was monitored. None of the existing permeability models could predict the permeability of the 
heterogeneous porous media. A series expansion was suggested to estimate permeabilities of such 
heterogeneous media. 

Key Words: porous media, permeability, shear thinning fluids, resin transfer molding, composites 
manufacturing 

1. I N T R O D U C T I O N  

Resin transfer mold ing  (RTM)  is a composi te  manufac tu r ing  process that  has gained industr ial  
acceptance due to the variety of complex shapes that can be made, the capabil i ty of producing  
closed parts with a core in a single step, good control  over mechanical  properties, short cycle times 
and high quali ty surface finish. Critical processing issues in R T M  are the pressure drop and  the 
mold  filling time, which are both related to the injection pressure at the inlet. This inlet pressure 
is a control lable  parameter  in RTM.  If  inadequate  inlet pressure values are used, the mold will fill 
very slowly or not  at all. Protracted fill time can lead to premature  resin cure, leaving 
un impregna ted  preform sections. If  excessive pressure is used there may be fiber wash, the cores 
in the mold may be displaced, and  the mold may leak or deform. Hence, the pressure drop 
experienced across the mold is of  great interest, and will depend on the preform permeabil i ty to 
fluid flow. The R T M  simulat ions for fluid flow in complex geometries that have been developed 
over the past few years require the permeabil i ty,  or a model for permeabili ty,  as input  data. This 
makes the permeabil i ty of a preform to fluid flow, or the flow mobili ty,  an impor tan t  considerat ion 
in the design of an R T M  process (Bruschke & Advani  1992; Johnson  1987; Bruschke 1992; Advani  
et al. 1994) and the permeabil i ty has been shown to be closely related to the preform structure 
(Parnas & Salem 1993). 

F ibrous  preforms are modeled as porous  media, and their structures are often characterized by 
three parameters:  (1) average fiber radius (R0, (2) volume fraction of fibers (v0; and (3) the 
or ienta t ion  of the fibers. The ratio of  volume filled by the fibers to the total volume defines 
the fiber volume fraction. If  all the fibers are assumed to span the entire mold,  have the same 
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radius, and are uniformly spaced, this ratio is defined by the fiber radius and their center spacing 
(c~): 

'~'= c~ [1] 

This definition is conceptually equivalent to a definition based on the mass of  the preform, the mold 
volume and the fiber density. Thus, the conventional method for calculating volume fraction is 
really an "averaged" volume fraction over the entire mold. However, preform fiber mats often 
consist of  fiber tows, or groups of bundled fibers. This bundling occurs due to the difficulty in 
handling individual fibers. Tows are woven (or braided) into a fabric and preformed to the shape 
desired before resin impregnation, While fiber tows make the fibers easier to handle, they introduce 
additional processing complexities. The reinforcement structure becomes heterogeneous with a 
broad range of local volume fractions. For example, the volume fraction inside a fiber tow is much 
higher than the volume fraction outside the tow. The "averaged" volume fraction derived by 
weighing the preform or using [1] falls somewhere between the volume fractions inside and outside 
the tow. As the flow spreads through the mat, it may flow preferentially around the tows in the 
regions of higher permeability, rather than through the inner portion of the tow. That  resin flow 
pattern can trap air inside the tow, and thus cause void formation inside the tow (Parnas & Phelan 
1991; Sadiq et al. 1992). After fabrication, if a composite part has voids in excess of  1% of its 
volume, performance can be significantly reduced (Broutman & Krockl 1967; Agarwal & Broutman 
1980; Grove 1980). For example, moisture absorption can increase and fatigue properties decrease 
as void fraction increases. 

A number of current research activities are focused on modeling the permeability based on the 
preform structure. While these efforts are currently limited to flows parallel or transverse to 
unidirectional arrays of ellipsoids, it is worth verifying such models before more complex 
geometries are simulated. Previous attempts at model verification have had mixed results, and 
experimental uncertainties due to structural heterogeneities in the unidirectional mats have been 
hypothesized to be the cause. Both to avoid and to assess the effects of  heterogeneity on the 
permeability measurement, model porous media were constructed for this study. 

The three goals of this paper are: (1) to experimentally verify the asymptotic model of  flow 
through porous media by measuring the permeability in a porous media composed of an ideal array 
of cylinders, (2) to demonstrate the effects of  structural heterogeneity on the flow behavior and (3) 
to determine the effects of fluid rheology on permeability. Other fluid flow issues, including surface 
tension of fluids, surface effects and wetting of the porous media, will not be addressed here. 
Although research has shown these other parameters may influence some types of permeability 
measurement, it has also been shown that these effects are minor when compared to the effect of 
the porous media structure. Experimental results will be compared to the recently developed 
asymptotic model of  permeability by Brushke & Advani (1992). The micro-level effects due to 
heterogeneity in the fibrous porous media observed in the fiber bundle experiments, and the 
qualitative description of voids and their effects on overall bed permeability will also be discussed. 

2. M O D E L S  FOR FLOW T R A N S V E R S E  TO A L I G N E D  FIBERS 

Darcy's  law (Darcy 1856) is a commonly accepted model for flow through porous media, 
including the fibrous materials used for structural composite reinforcements (Johnson 1987; Brown 
1984). The one-dimensional form of Darcy's  law relates the flow rate, Q, to the pressure gradient, 
dP/dx,  in the direction of flow, 

KA dP 
Q - [2] 

# dx 

where kt is the viscosity, A is the cross-sectional area and the proportionality constant, K, is called 
the Darcy permeability. Q/A can also be regarded as the momentum flux or superficial velocity 
of the fluid. Darcy's  law was developed for the flow of fluids through beds of particles and has 
been generalized to multiple dimensions where one relates the velocity field to the gradient of  the 
pressure by expressing the permeability as a second order tensor. In this paper we need only 
consider the one-dimensional form of Darcy's equation. 
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The capillary model 

The permeability has generally been shown to decrease sharply as the volume fraction of the 
obstructions increase. Many analytical solutions, including capillary models, express the per- 
meability in dimensionless terms of K/r z, where r is the average radius of the constituent particles 
in the porous media. For review, see Skartsis et al. (1992). Figure 1 shows this dependency as 
modeled by the Kozeny-Carman (Carman 1937) equation and by the recently developed 
asymptotic model of Bruschke & Advani (1992). Kozeny (1927) used the capillary model to relate 
the pressure drop to velocity. He developed his expression by assuming flow through an idealized, 
isotropic (i.e. random, granular), porous media consisting of tortuous capillaries. The concept of 
the hydraulic radius was used to relate the dimensions of the capillary to the parameters of the 
porous media. Carman (1937) modified this equation by incorporating the specific surface area of 
the porous media particles. The Kozeny-Carman equation expresses the permeability as a function 
of volume fraction, particle radius and the Kozeny-Carman constant, KoK~, as shown below: 

r 2 (1 - -  Uf) 3 
K - - -  [3] 

(9K0 K~) (v): 

It is interesting to note that the Kozeny-Carman equation applies only to one-dimensional flows 
and the permeability is expressed as a scalar quantity. There is no straightforward way to generalize 
it to multiple dimensions. In the Kozeny-Carman constant KoK~, Ko is a geometric shape factor 
that accounts for the difference in shape of the particles of a porous media while other parameters 
are equal. The factor K~ is the tortuosity. 

The capillary model that Carman & Kozeny developed to describe the flow of viscous fluids 
through porous media is based on an isotropic bed of spheres. Experimental investigation of such 
beds has shown good agreement with this model (Astr6m et al. 1992). The adaptation of the 
capillary model to the highly anisotropic case of flow across an aligned (unidirectional) fiber bed 
was achieved only by redefining the hydraulic radius (Williams et al. 1974; Lam & Kardos 1989). 
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Since the geometry of the flow channel was not addressed, experimental agreement has not been 
very consistent with this model. Researchers often compensate for this discrepancy by adjusting 
the Kozeny-Carman  constant to fit the data, but the Kozeny-Carman  constant should in fact be 
constant for a given geometry. Some researchers have found the Kozeny Carman constant to 
increase with volume fraction, while others have found it to decrease (Astr6m et al. 1992; Williams 
et al. 1974; Gutowski et al. 1987; Skartsis & Kardos 1990). Some have found fluid dependence; 
others have found none (Astr6m et al. 1992; Williams et al. 1974; Gutowski et al. 1987). Due to 
this scatter, no specific conclusions are drawn about the validity of  a predictive model for 
permeability based on the capillary approach. 

Recently, however, Bruschke & Advani (1992) showed that due to inherent assumptions in the 
capillary model, it is not a suitable choice to predict the flow across a fiber bed. They performed 
numerical calculations of creeping flow around cylinders and determined the values of the 
Kozeny-Carman  constant. The results indicate that, contrary to the Kozeny-Carman  equation, 
KoK~ is not a constant. Differences of  up to an order of  magnitude exist between permeability 
results from the capillary model and results from numerical models. 

The asymptotic model 

A large difference between the capillary and asymptotic models appears at high volume fractions 
in figure 1, and this difference points out why the capillary model is inappropriate for use with 
porous media containing arrays of aligned fibers. Note that the C a r m e ~ K o z e n y  model, [3], 
predicts a zero value of the permeability at a value of vr = 1. However, an array of cylinders reaches 
a maximum packing fraction at v r < l  (~0.78 for a square array), at which the transverse 
permeability goes to zero. Thus, the Carmen Kozeny model is expected to overpredict the 
permeability, especially at high volume fractions. 

A more credible approach than the capillary model for predicting the permeability would be to 
idealize an aligned fiber bed as an array of regularly spaced cylinders (Sangani & Acrivos 1982: 
Bruschke & Advani 1992; Chmielewski et al. 1990). Solving the Stokes flow equations in such a 
model geometry would render unnecessary the approximations of  hydraulic radius, tortuosity and 
shape factor. The complex geometry of regular arrays of  cylinders cannot be solved exactly in 
closed form for the flow over the full range of possible volume fractions (5-78% in the case of 
square arrays). However, analytical solutions for the aligned fiber bed geometry at very high and 
very low volume fractions are possible (Bruschke 1992). At high volume fractions, the lubrication 
approximation can be used to solve for the flow through the array. At low volume fractions, the 
cell model can be used to determine the flow through the array. Once the flow is derived from the 
model, the permeability can be obtained from Darcy's  law. An asymptotic matching procedure can 
then be used to obtain a closed form solution of the permeability over the entire volume fraction 
range, hence the name asymptotic model. The entire model can also he extended to address 
generalized Newtonian fluids. 

The relationship of the flow rate to the pressure drop for Newtonian fluids, in the cell model, 
yields the dimensionless permeability for low fiber volume fractions: 

- - -  l n ( / e ) - ~ + l o  a [4] 
r "  

where le is the ratio of the cylinder radius to the cell radius and is related to volume fraction by 

1 
t~ = - [51 

/?f 

The relation between flow rate and pressure drop in the lubrication approximation allows one to 
establish the dimensionless permeability for high volume fractions: 

r" 3 73 -~tn w/1 _12 " + 5 / ~ + 1  [61 
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where l, is the ratio of half the center spacing divided by the cylinder radius and is related to volume 
fraction as 

2 4  l n -- ; V r [7] 

Bruschke & Advani (1992) used an asymptotic matching function to combine the solutions from 
the lubrication approximation and the unit cell model. The resulting formulation is a solution that 
is valid across the entire volume fraction range and agrees very well with the numerical calculations 
of flow across an idealized array of cylinders. Note that at high volume fractions, figure 1 shows 
that the asymptotic model predicts much lower values of the permeability than does the capillary 
model. 

The micro-flow model 

In addition to the macroscopic flow behavior described above, small scale flow behavior may 
occur that is important to the performance of composite parts manufactured by liquid molding. 
For example, voids may form at the flow front due to non-uniformities in the reinforcement which 
lead to the creation of preferential flow pathways (Parnas & Phelan 1991; Haywood & Harris 1990; 
Parnas et al. 1994). In such cases, the macroscopic flow may be modified as well as the final part 
properties. 

A one-dimensional model of behavior at the flow front has been presented for the case under 
discussion, namely transverse flow through heterogeneous structures of aligned fibers (Parnas & 
Phelan 1991), and will be briefly summarized here. In an RTM process, a preform may contain 
fibers oriented in many directions, and fluid flow may occur in several directions relative to the 
fibers. Rather than beginning with the analysis of such a complex case, the simplified geometry 
depicted in figure 2 is used as a first-order model for demonstrating the effect of fiber impregnation. 
The model geometry shows a unidirectional flow perpendicular to the fiber bundles. It is assumed 
that as the advancing flow front encounters a fiber bundle, it flows around it, entrapping a pocket 
of air as it does so. After the front surrounds and bypasses a fiber bundle, the fiber bundle is slowly 
impregnated with fluid but may not completely fill. The basis for the assumed entrapment 
mechanism is that the interstitial spaces within the fiber bundles are much smaller than the spaces 
between the fiber bundles that make up the preform. Thus, it is expected that the permeability 
of a fiber bundle to resin impregnation is much less than the permeability of the preform to resin 
flow. 

To quantify the effects of the impregnation process on the advance of the flow front, the fiber 
bundles are treated as flow sinks which remove fluid from the flow advancing through the preform. 
A mass balance on a slice of the preform of a size appropriate for volume averaging the 
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Figure 2. Experimental mold. 
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macroscopic flow yields a relationship between the fluid velocity V and the rapidity of  the 
impregnation process 

d V  q(x,  t) 
- - -  [ 8 1  

dx C~ 

where q(x,  t) is the sink strength at position x in the mold at time t. Equation [8] has a very simple 
interpretation. For q < 0 (note that q < 0 for a fluid sink), the impregnation process of  the fiber 
bundles causes a reduction in the superficial fluid velocity as the front penetrates further into the 
preform, for as long as the sinks are active. When q = 0 (i.e. impermeable fiber bundles or inactive 
sinks) then d V / d x  = 0 and the fluid velocity in the preform is uniform for the simple unidirectional 
flow problem considered here. Note also that [8] is the equation of continuity, and that macroscopic 
flow simulators based on Darcy's  law all solve the flow equations assuming the continuity equation 
to be homogeneous, i .e.V. V = 0. This model for flow in heterogeneous porous media couples the 
flows at different length scales by making the continuity equation inhomogeneous at the 
macroscopic length scale. 

The Darcy law model and continuity equation for the macroscopic flow cannot be solved until 
a specific expression for the sink strength q is specified. Such an expression is obtained by 
considering the microscopic flow of resin into the fiber bundle. Darcy's  law for radial flow is used 
to relate the radial fluid velocity and the radial pressure gradient, dp/dr,  within the fiber bundle. 
Solving the model for radial flow into the fiber bundles is complicated by the fact that the radial 
pressure gradient is not constant, but must be expressed as 

/~2  /0,02 dp p 0 1 . f , J , .  - -  p 

where ~ is the radial position of the front penetrating the fiber bundle at time t, Rf is the fiber 
bundle radius, P0 is the initial pressure in the mold before the filling operation began and p~_ is the 
pressure outside the fiber bundle at time t. The term Po R~/.~2 in [9] arises from the internal pressure 
in the fiber bundle which increases as the radial fluid position, ~ ,  decreases (due to a decrease in 
gas volume in the fiber bundle). The pressure outside the fiber bundle, p .... varies with time due 
to the global flow outside the fibers. 

The rate of  penetration of the fluid into the fiber bundle is found by substituting [9] into Darcy's  
law for radial flow and evaluating the fluid velocity at r = :~; this yields 

d;# ~poR~ / ~  2 -- p ,_ 

/~# In 

where ~ is the permeability within a fiber bundle. This last expression enables the determination 
of the desired quantity, the sink strength q, via the relation 

d ~  
q(x,  t) = 2 ~ z . J -  [11] 

dt 

and the sink strength, q, couples the penetration of the resin into the fiber bundles with the flow 
in the preform outside the fiber bundles. Equations [10]-[11] indicate that after the flow front 
engulfs a fiber bundle the sink strength of the fiber bundle increases due to an increase in p~, the 
pressure of  the fluid outside the fiber bundle. As the sink strength increases, fluid is removed from 
the advancing flow into the fiber bundle, thus simulating the impregnation process. The sink 
strength approaches zero at a later point in time when the pressure inside the fiber bundle comes 
into equilibrium with the pressure outside the fiber bundle. 

The microflow phenomena described above have consequences on the macroscopic flow, both 
during the initial mold filling and on the steady state flow after the mold is filled. The effect of  
the microflow on the steady state macroflow can be assessed with permeability measurements. 
Assessing the effect of  the microflow on the transient mold filling behavior requires more detailed 
observations. 
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3. E X P E R I M E N T A L  

The approach in the current experiments was, first, to force a Newtonian fluid to flow through 
a porous media consisting of homogeneous arrays of  circular, rigid fibers oriented perpendicular 
to the direction of flow. The pressure drop across the media and the flow rate through the media 
were measured. The Darcy permeability was calculated from these values with [2]. Since the 
pressure drop across a preform is dominated by the flow transverse to the fibers, this quantity is 
very important  in characterizing preform permeability. The volume fraction range significant for 
typical fiber composites, from 40 to 60%, was investigated. Two different fiber radii, 0.0794 cm 
aluminum welding rods and 0.3175 cm nylon stock, were used to determine the validity of  the claim 
of the various models that the dimensionless value of K / R  ~ is only a function of the volume fraction 
of a homogeneous porous media. 

In a second set of  experiments, a model heterogeneous porous media was constructed to 
determine the effect of  preform heterogeneity on permeability. In this experiment, the 0.3175 cm 
radius solid nylon rods used in the aforementioned experiment were replaced by fiber bundles, 
simulating the reinforcing fiber tows in composites. These fiber bundles consisted of numerous 
0.07112 cm diameter nylon fibers inserted into 0.635 cm diameter holes, the 0.635 cm bundles were 
placed in an array at volume fractions of 40 and 50%. The volume fraction of 0.07112 cm fibers 
inside the bundle was varied from 62 to 75% by inserting different numbers of  0.07112 cm fibers 
into the 0.635 cm holes. This type of bed more closely resembles a true fiber preform than do 
the beds made of homogeneous arrays of  cylinders used in previous investigations (Chmielewski 
et al. 1990). Void formation inside the fiber bundles was observed, and the permeability of  the 
model heterogeneous porous media was measured. Care was taken to completely saturate the 
model fiber tows with fluid before the permeability of  the heterogeneous porous media was 
measured. 

A third set of  experiments was conducted to characterize the flow of shear thinning fluids in the 
model arrays of  cylinders. Although a great deal of experimental work has focused on flow of shear 
thinning fluids in particulate porous media, little experimental research has been published in the 
area of  flow of shear thinning fluids transverse to fiber beds (Chmielewski et al. 1990). The analysis 
of  shear thinning flow is more difficult than for Newtonian flow because viscosity varies with shear 
rate. 

Although most models assume homogeneous arrays of  rigid circular fibers, most previous 
research has been conducted on real fiber beds, and there has been little experimental work done 
on homogeneous arrays of  rigid circular fibers (Williams et al. 1974; Skartsis & Kardos 1990; 
Gebar t  1990). This is due to the difficulty of  constructing ideal fiber beds. Thus, it is difficult to 
experimentally evaluate the validity of  such models, as all the researchers attribute the discrepancies 
in their results to heterogeneities in the porous media, fiber waviness, voids and other inconsisten- 
cies due to the nature of  real fiber beds. Experiments were conducted on idealized fiber beds to 
eliminate these perturbations. Bruschke's (1992) asymptotic model was extended to describe the 
flow of shear thinning fluids, and the experimental results for a well characterized fluid will be 
compared with that model. 

Experimental  mater&& 

All experiments were conducted with square arrays of  cylinders or fiber bundles. The idealized 
fiber beds were constructed using acrylic plates with drilled holes spaced in a square array, where 
the center spacing was defined by the volume fraction and size of  fiber of  the fiber bed (see [1]), 
as illustrated in figure 3. Twelve rows of fibers were used to form the fiber beds, with fibers spanning 
the channel width of  9.525 cm. One experiment was also conducted with 4 rows of fibers, the results 
were nearly identical to the corresponding experiment conducted with 12 rows, indicating that the 
flow field develops quickly within the fiber beds and that twelve rows of fibers were sufficient for 
the experiments. The number of  rods placed across the channel varied with volume fraction and 
rod radius from 11 (40% vr with 0.3175 cm rods) to 56 (60% vr with 0.079375 cm rods). The channel 
length of 20.32 cm was used to ensure that the flow was fully developed through the majority of  
the media. The channel depth was 1.905 cm. Since the top and bot tom plates were clear acrylic, 
the flow could be visually inspected to detect any flow irregularities, such as edge effects, clogging 
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Figure 3. Void entrapment in heterogeneous porous media. 

or stagnation. Fluid pressure in the mold was never large enough to cause deflection of the acrylic 
sides. 

Both solid fibers and fiber bundles were used in the experiments. The fiber bundles greatly 
increase the flow complexity and the architecture of  aligned arrays of cylinders. Hence, a new 
nomenclature that clarifies this heterogeneous porous media is introduced. Nominal volume 
fraction (Nvf) refers to the volume fraction of the fiber bed as if the resident fibers, of  radius Rf, 
were solid. This volume fraction describes the homogeneous porous media composed of solid rods. 
Tow volume fraction (T,.f) refers to the volume fraction of the fibers inside each fiber bundle of 
radius Rr. The T,f is based on the area taken by a number (N) of  fibers of  radius R b divided by 
the area of  the hole of  radius Rf. Global volume fraction (G,r) is the volume fraction that would 
exist if the small fibers of  radius R b w e r e  distributed homogeneously in the fiber bed, and Gvr is 
the quantity that would be obtained from the weight, density and volume occupied by the porous 
media. This is the volume fraction that would exist if the heterogeneous fiber bed was homogeneous 
with resident fibers of radius R b. Effective cylindrical volume fraction (C,.f) refers to the volume 
fraction that would exist if all the fibers inside a bundle were combined into one solid fiber of radius 
Rc. The fiber radius, Rc, equals the square root of  the number of  fibers in the tow times R ~, as shown 
in [12e]. Thus, Rc is used to determine the effective cylindrical volume fraction, C+ The center 
spacing remains the same as that for the solid fiber bed. These relationships are described 
mathematically as follows: 

g ( R f )  2 
N , f -  C~ [12a] 

(Ru~ 2 [12b] T,,. = N \~f , /  

NN 1 g(Rb) 2 
Gvt- [12c] 

A 

NTr (R~)2 
C,,,-- C~ [12d] 

Rc = Nx/~R~b) 2 [12e] 

where the total area of the porous bed is denoted by A, the center spacing between holes with radius 
Rf is denoted by Cs and the total number of  tows with radius Rr is given by NT and is equal to 
the number of  holes drilled to construct the fiber bed. Table 1 provides the parameters used in the 
experiments conducted with fiber bundles. 

Two fluids were used for the experiments. Corn syrup was used as the model Newtonian fluid. 
Viscosity tests over a wide range of shear rates indicated that the corn syrup was not strictly 
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T a b l e  1. F i b e r  b u n d l e  p a r a m e t e r s  
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Nvf (%) Tvr (%) Gvr (%) Cvf (%) N Rf (cm) R b (cm) Re (cm) 
50 75.3 38.38 37.64 60 0.3175 0.0356 0.275 
40 69.0 29.05 27.58 55 0.3175 0.0356 0.264 
40 62.7 26.40 25.09 50 0.3175 0.0356 0.251 

Newtonian, but had a power law index of  n = 0.99. This is regarded as being close enough to a 
Newtonian fluid for the purposes of  these experiments. The viscosity ranged from 4.9 to 10 Pa s. 
Viscosity and density were measured before and after each trial, and no significant changes were 
detected. 

The second fluid used was a solution of Carbopol, a polymer manufactured by B.F. Goodrich. 
The Carbopol was mixed into distilled water at 5% concentration by weight. Sodium hydroxide, 
0.025% by weight, was added to the mixture to neutralize it. Additional water was added to dilute 
the Carbopol solutions to the desired consistency. Water thinned the Carbopol and changed the 
shear index. Carbopol exhibits shear thinning behavior and can be characterized as a generalized 
Newtonian fluid by using the power law model, [13], which relates shear rate, ~y, to shear stress, 

Txy~ 

r~, = #(~x,) [13a] 

P(~x~.) = m [~,y[" 1 [13b] 

where n is the shear index and m is the consistency index. A Brookfield viscometer was used to 
characterize the fluid before and after each experiment. Characterizations performed on the same 
fluid at different times produced nearly identical results. A characteristic of this fluid that 
complicated the experiments was that it demonstrated an apparent yield stress, especially in the 
more concentrated solutions of Carbopol. However, dilute solutions provided insufficient pressure 
drop across the fiber bed to accurately measure the permeability. A compromise was found where 
the yield stress appeared insignificant and the pressure drops generated in the experiments could 
be accurately measured. For those cases, the Carbopol concentration was adjusted to produce a 
solution with a consistency index of approximately 25 Pa s (250 poise). 

Experiments were carried out with the Carbopol solutions flowing in the arrays of the 0.0794 cm 
radius aluminum welding rods, and the rheology of the fluid used in each experiment is summarized 
in table 2. The rheological parameters given for the Carbopol solution used in the experiment at 
a 50% volume fraction have a rather large range because that sample of Carbopol was the first 
one characterized, and the characterization data were not completed properly. Experiments with 
the Carbopol in the arrays of nylon rods are not reported because the fluid did not appear to wet 
the rods well and consistent results could not be obtained. 

The fluids were driven through the mold transverse to the rods via a gas drive pump. This 
pump consists of a large stainless steel tank with an outlet at the bottom. Pressurized gas was 
injected from the top of the tank, which drove the fluid out of the bottom of the tank at a constant 
pressure. Once the fiber bed was saturated, the flow rate remained constant as long as the tank 
pressure was constant. This pump created and allowed for long term steady flow through the 
apparatus. The flow was easily controlled by varying the inlet pressure from a regulator on the 
nitrogen tank. The pressure drop was recorded across the bed of fibers. Flow was measured at the 
outlet. From these values, the Darcy permeability was computed. The pressure drop across the fiber 
bed was measured by an inverted U-tube manometer or a 17.24 MPa (2.5 psi) differential pressure 
transducer. 

Table 2. Rheological characterization of Carbopol solutions 
pumped through arrays of 0.0794 cm radius aluminum welding 

rods 

Nvf (%) Shear index, n Consistency, m (Pa s) 

40 0.44 23.1 
50 0.39-0.54 27.7-29.7 
60 0.40 28.8 
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Table  3. Permeabi l i ty  for 0.635 cm d iamete r  nylon rods 

N,. r Error in Experimental error Bruschke Percent 
(%) N,f, + % Experimental K (%) K (cm 2) difference 

40.8 0.3 3.90x 10 ~ 10.36 +8.54 3.51 × 10 3 11.14 
51 0.4 1.23x 10 3 -3.41 +10.12 1.20×10 ~ 2.19 
61.2 0.5 3.02× 10 4 -8.10 +7.80 3.23x 10 ~ --6.5 

The permeabi l i ty  of  the heterogeneous  fiber bundles  was measured  in a s imilar  fashion. In 
add i ton  to the permeabi l i ty  measurements ,  the t ransient  mold  filling flow at the microscopic  scale 
was recorded on to  video tape. The cont ras t  o f  the fluid and the nylon fibers was enhanced by adding  
red food color ing  to the corn syrup. 

4. R E S U L T S  

Results with corn syrup and solid rod~ 

A range o f  exper iments  was carr ied out  with a Newton ian  fluid and homogeneous  porous  media  
to give a good  basis by which to judge  the asympto t i c  model  o f  Bruschke (1992). Three nomina l  
volume fract ions,  40, 50 and 60%, were used with two different fiber radii.  The da ta  collected from 
these exper iments  were reduced to yield a permeabi l i ty ,  and excellent agreement  with the model  
was obta ined .  Tables  3 and 4 show the exper imenta l ly  derived permeabi l i ty  results t abu la ted  with 
the pe rmeabi l i ty  pred ic t ions  of  Bruschke 's  a sympto t i c  model .  The exper imenta l  permeabi l i ty  was 
ob ta ined  f rom the slope of  a leas t -squares  fit line of  fluid velocity, V, p lot ted  agains t  the rat io  of  
pressure gradient  to viscosity (VP/p ) .  The errors  in nominal  fiber volume fract ion,  Nvr, were 
ca lcula ted  from the s t anda rd  devia t ion  of  the measured  d iameter  of  several hundred  fibers. The 
errors  in the permeabi l i ty  were compu ted  by er ror  p r o p a g a t i o n  from expected errors  in pressure,  
flow rate and  viscosity values. Agreement  is very good  in all cases, and within 7% for all but  one 
case. The 11% devia t ion  in the test conduc ted  with the 0.635 cm d iameter  rods  at an N,.~ of  40.8% 
is believed to be due to non-sys temat ic  exper imenta l  errors.  This test was one o f  the first 
exper iments  conducted .  Figure  4 i l lustrates the results with a plot  of  log K/R~ vs volume fract ion 
using the exper imenta l ly  ob ta ined  values for the two rod sizes and the values predic ted by 
Bruschke 's  a sympto t i c  model .  A l though  the range of  fiber radii  tested was small ,  figure 4 indicates 
that  the d imensionless  ra t io  K/'Rf appears  to be a valid scaling of  the permeabi l i ty .  The agreement  
of  the exper imenta l  results with both  Bruschke 's  model  and numerical  calculat ions  indicates that  
the exper imenta l  setup and design was valid for flow regimes t ransverse to al igned fibers. 

Results with Carbopol and solid rods" 

The results for the exper iments  with a shear  th inning fluid are presented in terms of  the flow 
mobi l i ty .  The flow mobi l i ty ,  M, for a shear th inning fluid is ana logous  to K/l~ for the Newton ian  
case (see [2]). Therefore ,  for shear th inning fluids, M is expected to vary with the pressure gradient  
since the fluid viscosity changes with shear  rate, unlike the case of  a Newton ian  fluid where the 
ra t io  K/I~ is a constant .  Exper imenta l ly  M can be expressed simply as the rat io o f  the superficial 
fluid velocity to the pressure gradient .  A log - log  plot  of  M v s  VP should be l inear with a slope 
o f  ( l / n ) - 1 ,  reflecting the power- law dependence  o f  the viscosity on the pressure gradient .  
Pe r tu rba t ion  of  the consistency index, m, shifts the graph vertically but  does not  affect the slope. 
F o r  the Newton ian  case, n = 1 and M = K/~l is a cons tan t  with no dependence  on pressure 
gradient .  

F igures  5(a) (c) show the exper imenta l ly  de te rmined  values o f  the flow mobil i ty ,  as well as the 
results compu ted  by the a sympto t i c  model  and the Newton ian  solut ion,  for the three cases where 

Table  4. Permeabi l i ty  for 0.1588 cm d iamete r  a l u m i n u m  rods 

N~f Error in Experimental Experimental error Bruschke Percent 
(%) N<, ± % K (cm 2) (%) K (cm 2 ) difference 

38.9 1.3 2.51 × 10 4 -I0.10 +5.83 2.66x I0 ~ -5.60 
48.6 1.7 9.79× 10 ~ -8.8 +7.29 9.78 x 10 s 0.07 
58.3 2.0 3.28× 10 5 9.10 +7.94 3.08 × 10 ~ 6.62 
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Figure 4. Log K/r 2 vs volume fraction for the experimental data collected in square arrays of cylinders. 

Carbopol  solutions were pumped through arrays of 0.1588 cm diameter aluminum welding rods. 
The solid line through the experimental points in each figure is a least squares fit of  the data. The 
slope of the least squares fit line can be used to compute the apparent shear index n of  the fluid 
in the porous media for comparison to the value of n determined during the fluid characterization 
measurements (see table 5). The fluid flow behavior in the porous media is clearly consistent with 
the rheological characterization data. While additional calculations could render the results in 
terms of shear stress and shear rate for comparison to the power-law model, that is not necessary 
because of the detailed comparison between the experimental results and the asymptotic model also 
shown in figures 5(a) (c). 

A comparison of the experimental results with the asymptotic model demonstrates that the flow 
behavior of  power-law fluids in arrays of  cylinders can be predicted from the porous media 
structure, albeit not as accurately as the flow of Newtonian fluids. It is important to note that the 
model calculations used the fluid rheological constants measured in the Brookfield viscometer to 
provide results independently of  the porous media experiments. The two "model"  lines in figure 
5(b) bracket the experimental data, and were computed for two values of  the shear index, n = 0.39 
and n = 0.54, because the original characterization of that batch of Carbopol  solution was accurate 
only to that tolerance (see table 2). The vertical offset between the experimental data and the model 
calculations may arise from inaccuracies in either the characterization of the consistency index, m, 
or from errors in the measurement of  pressure. Also, the small yield stress of  the fluid remaining 
after the Carbopol  concentration was optimized for these experiments may have contributed to the 
discrepancies between experiment and model calculation. Nevertheless, the model calculations of  
flow mobility are within roughly 30% of the experimental values. 

Results with f iber bundles and corn syrup 

Several tests were conducted with bundles of  0.07112cm diameter fibers inserted into the 
0.635 cm diameter holes in place of  0.635 cm diameter solid rods. These tests demonstrated the 
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Figure 5. The flow mobility vs pressure gradient for the flow of shear thinning fluids in arrays of 0.073 cm 
radius aluminum welding rods. (a) 40% nominal volume fraction; (b) 50% nominal volume fraction; and 

(c) 60% nominal volume fraction. 

effects o f  structural heterogeneity on the permeability and on void formation.  The permeability o f  
the arrays o f  fiber bundles more  closely resembled the permeability o f  the arrays o f  solid 0.635 cm 
diameter rods than the permeability expected for homogeneous  arrays o f  0.07112 cm diameter 
fibers. This is to be expected since the permeability o f  each fiber bundle was on the order o f  10 8 cm 2 
while the permeability o f  the array o f  solid rods was on the order o f  10 -3 cm 2 (see table 3). Table 6 
shows the permeability o f  the fiber bundle arrays and the permeability o f  the corresponding arrays 
o f  solid rods. The permeability o f  the arrays o f  fiber bundles was always higher than the 
permeabili ty measured with the solid rods, as the increase in porosity leads one to expect. 
Addit ionally,  the measured permeability rose as the tow volume fraction, Tvr, o f  the fiber bundle 
fell. 

The increase in the permeability o f  the arrays of  fiber bundles, relative to the permeability o f  
the solid rods, is not  easily predictable with current models. For  example, table 7 compares  the 
experimental results with theoretical permeability predictions using several measures o f  the fiber 
volume fraction. The permeabili ty prediction based on the tow volume fraction Kr, f is much too 
low because the tow volume fraction is larger than the nominal  volume fraction and the fiber radius 
is much smaller than the tow radius. The permeability prediction based on the global volume 
fraction KGvf is also too low because the small fiber radius dominates  the calculation even though 

Table 5. Comparison of the apparent shear index in the porous media to the value 
of n found by rheological characterization 

Nvf, (%) Apparent n in porous media n from characterization 

40 0.46 0.44 
50 0.46 0.39~3.54 
60 0.41 0.40 
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Tab le  6. Pe rmeab i l i t y  o f  p o r o u s  a n d  solid rod  fiber beds  

N u m b e r  o f  fibers N~r G~r Tvf K, Kp 
in a bund le ,  N (%)  (%)  (%)  solid fiber b u n d l e  

50 40 26.4 62.7 3.97 x 10 _3 4.97 x 10 3 
55 40 29.1 69.0 3.97 x 10 3 4.76 x 10 3 
60 50 38.4 75.3 1 . 2 3 x  10 3 1 . 2 8 x  10 -~ 

the global volume fraction is smaller than the nominal volume fraction. Even the permeability 
prediction based on the effective cylindrical volume fraction Kc,r is not accurate, although in this 
case the prediction is too high. It is clear that none of these parameters offers a satisfactory way 
to predict the permeability of  a heterogeneous media that consists of  two embedded porous media 
of  widely differing permeabilities and length scales. 

An approximation of Kp for the arrays of  fiber bundles may be generated based on the 
permeability Ks of the homogeneous array of solid rods at the nominal fiber volume fraction. 
However, as the tows are porous and contain fibers, one needs to scale the prediction of 
permeability with the tow volume fraction, T~r, and the maximum volume fraction, Ufmax. At Ufmax , 
the permeability of the tow will approach zero and the permeability of  the heterogeneous media 
of fiber bundles will correspond to the permeability of  a homogeneous media of solid rods at the 
same nominal volume fraction. We then assume that Kp can be related to K~ by a series expansion 
in which a function of the tow volume fraction is the expansion parameter  

Kp= K~ L k , , { l -  T"~'~"= K~[ko + k,x + k2 x2 -}-" "] [14] 
n = 0 UfmaxJ 

a n d x  = 1 - (T,r/vrm~x). Clearly, k0 must be unity since Kp = K~ if x = 0 (T,.~-= Vrm~x)- For the large 
values of  T,.r used in the current work, x is small, and the linear term in the expansion may suffice 
to approximate the experimental results. If  the packing arrangement of fibers in the tow is assumed 
to be a square array, the maximum allowable value of tow volume fraction is vf,,,~x ~ 78%, and if 
the packing arrangement is assumed to be hexagonal, Vrm,~ ~ 91%. Figure 6 illustrates the usage 
of [14] by plotting the experimental values of  Kp/& as a function of x for two cases, the case where 
x is computed assuming a square packing array and the case where x is computed assuming a 
hexagonal packing array of fibers in the tows. In the case of the square array, a linear least squares 
fit of  all four data points (circular symbols) provides an accurate fit 

K p = 1.006 + 1.358.x [15] 
K~ 

as shown by the solid line in figure 6 and by the numerical values provided in table 8. In the case 
of  the hexagonal array, a fit to all four data points (triangular symbols) is clearly inaccurate 

Kp = 0.973 + 0.829-x [16] 
& 

First, the line does not fit the points closely, especially the point located at x = 0.173. Second, 
the y intercept which corresponds to k0 in [14] is not very close to unity. Thus, the correlation 
with [14] indicates that the expected fiber arrangement within the model tows is a square 
array. 

The packing arrangement of the nylon fibers within the model tows is illustrated in figure 7(a), 
and shows regions of  both square and partly hexagonal packing. The square packed regions in the 
model tows may have dominated the flow behavior, however, errors in the experimental 

Tab le  7. E x p e r i m e n t a l  a n d  theore t ica l  permeabi l i t i es  o f  f iber b u n d l e  beds  

Kp T~r Theore t i ca l  Gv~ Theo re t i c a l  C,,f Theore t i ca l  
f iber b u n d l e  (%)  Krv~ (%)  KG~f (%)  Kc , f  

1.28E 3 75.3 2.50 x 10 7 38.4 5.63 x 10 5 37.6 3.64 x 10 3 
4 .76E - 3 69.0 1.12 x 10 -6 29.1 1.47 >( 10 4 27.6 9.44 x 10 
4 .97E - 3 62.7 3.57 x I0 6 26.4 1.97 × 10 -4 25.1 1.12 × 10 -2 
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Figure 6. The experimental measurements of permeability in the porous bundles plotted according to [14], 
assuming either a square packing or a hexagonal packing arrangement of the fibers in the fiber bundle. 

measurements  may also have contr ibuted to the better fit in the correlation for the square packing 
than for the hexagonal  packing. For  example, if the experimental point  with Kp/Ks = 1.041 is in 
error, and a linear fit is done on the remaining three points, the resulting fits show very close 
correlat ion with the points computed  assuming a hexagonal array rather than the square array, 
as illustrated in figure 6 by the line labeled "least squares fit (neglect point  at X = 0.173)". However,  
the data  were taken very carefully, figure 6 indicates that the flow behavior  was probably  governed 
by the regions o f  square packed fibers, and figure 7(a) shows a predominance o f  square or  partially 
square packed regions. In any case, more data would clearly be helpful in discerning the flow 
behavior  in heterogeneous porous  media. This study indicates that despite the construct ion o f  a 
model  porous  media uncertainty persists concerning the exact microstructure.  Unlike fibrous 
reinforcements, however, this uncertainty can be resolved by using more careful construct ion 
techniques when building model porous  media in the future. 

F rom these results it is clear that  [14] gives an acceptable approximat ion for flow in 
heterogeneous porous  media despite the uncertainties in the experimental measurements.  Al though 
closer agreement  with the experimental data could have been obtained in the case o f  square packing 
by using a non-zero value o f  k2, there is insufficient data to justify a non-linear model 
approximat ion.  However,  a more  sophisticated mode[ is clearly required because [14] does not 
work correctly in the limit o f  high values o f  the nominal  fiber volume fraction Nvl-. As N~f 
approaches  78%, the maximum packing fraction, Ks approaches zero since flow could not occur 
through such a bed of  solid fibers. The permeability o f  a bed of  porous  fibers would not be zero 
in such a case. Nevertheless, [14] may offer a simple but acceptable model for many practical 
applications. 

Table 8. Comparison of experimental permeability enhancement Kp/K~ to predicted values using [14], assuming either square 
or hexagonal packing 

Experimental Predicted Kp/K~ Percent Predicted Kp/K~, Percent 
Tvf (%) Kv/K ~ square array, [15]  dif ference hexagonal array [16]  difference 

62.7 1.252 1.272 1.6 1.230 - 1.8 
69.0 1.199 1.162 -3.1 1.173 -2.2 
75.3 1.041 1.054 1.2 I. 116 7.2 
100 (solid) 1.0 1.006 0.6 0.973 -2.7 



770 q A K SADIQ ct a/ 

The effect of  structural heterogeneity on the unsaturated flow is, perhaps, more important than 
the effect on the permeability, or saturated flow. The previous microflow model summarized above 
(see [8] [11]), and the experimental work of Haywood & Harris (1990), has shown that voids may 
be expected to form at the flow front during liquid molding. The flow experiments with the model 
porous media constructed of fiber bundles provided an opportunity to test the air entrapment 
hypothesis of the microflow model (Parnas & Phelan 1991) and to observe the flow behavior in 
a well specified geometry. However, the experiments did not generate large enough pressure 
gradients to perform a quantitative test of  the fiber bundle infiltration dynamics predicted by the 
microflow model. 

The behavior at the flow front followed the pattern depicted in figure 7(b) (d) in each experiment 
conducted with the fiber bundles. As the fluid flow met the fiber bundles, air was trapped in the 
fiber bundles. The flow front could clearly be seen to approach the fiber bundle, impregnate a fiber 
or two into the bundle while flowing around, and finally combining above the fiber bundle. As the 
flow progressed through the mold, the air remained trapped in the fiber bundles, forming voids. 
A higher tow volume fraction, 7\~, led to less fluid penetration of the bundle. After the flow front 
passed a fiber bundle creating a void, the void size did not remain constant, but slowly became 
smaller as the flow progressed through the mold. Both the pressure increase in the fluid outside 
the bundle and capillary action within the bundle could lead to void size reduction over time. These 
two effects could not be quantitatively distinguished in the tests conducted to date. However, it 
is worth noting that after the fluid filled the mold, and while the fluid continued to flow, the voids 
ceased shrinking, indicating that the increase in external bundle pressure as the mold initially filled 
probably caused the void shrinkage. 

The tests were conducted at a variety of  injection velocities and fluid viscosities, thereby varying 
the Reynolds number from 10 3 to 0.5, a range that includes many typical liquid molding processes. 
The other important parameter, the Capillary number, was not wined signilicantly duc to difliculty 
in constructing the model porous media with fiber bundles. The capillary pressure in this work was 
probably much lower than in composite fabrication processes duc lo the large size of the fibers 
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Cd) 

Figure 7(d). 

Figure 7. Typical flow fl'ont behavior observed with fiber bundles. (a) The structure ol 'a tiber bundle: Ib) 
the flow fi-ont 3 s after fluid appeared at the bot tom of the viewing window: (c) the tlow front 13 s after 
tluid appeared: and (d) the fluid and trapped voids long after (45 s) the flow front passed oul of the top 

of the viewing window. 

used in the fiber bundles (~0.07cm),  relative to the fiber size in typical reinforcements 
( < 0.001 cm). The size of the fibers is important since the characteristic length scale of the interstitial 
flow spaces enters the definition of the capillary pressure, Ape = (2or cos 0)/r,, where a is the fluid 
surface tension, 0 is the contact angle and r~ is the characteristic size of the interstitial flow channels. 
Nevertheless, the similarity between the void formation seen at the flow front in this work and that 
seen previously with glass reinforcements (Haywood & Harris 1990) supports the hypothesis that 
structural heterogeneity leads to flow induced void formation. 

The initial formation of the voids in the model tows appears to have occurred because 
the structure of the model tows was very dense compared to the average density of the 
porous media, forcing the fluid to flow preferentially around the model tow as depicted in 
figure 7. This heterogeneity in the model porous media may be characterized by comparing the 
overall porosity of the porous media, 61.6 73.6%, to the porosity within the model tows, 
24.7 37.3% (see table 1). The heterogeneity in porosity is reflected in a heterogeneity in 
permeability. The measured permeability of the model porous media was, in one case, 
3.97 x 10 ~cm-', which is approximately six orders of magnitude larger than the estimated 
permeability of the model tows used in that experiment, 5.32 x l0 ~ cm:. The overall permeability 
was measured after the mold was filled and the permeability of the model tows was estimated with 
the asymptotic model discussed above. Although further refinements in the void formation 
experiment are necessary to properly scale all the relevant dimensionless groups simultaneously, 
the current experiments indicate that the air entrapment mechanism assumed in the model 
is reasonable. The fluid flow bypasses the fiber bundles much more rapidly than it penetrates 
them. 



T R A N S V E R S E  FL O W  T H R O U G H  A L I G N E D  C Y L I N D E R S  773 

5. C O N C L U S I O N S  

Excellent agreement was found between the measured permeability and the permeability 
predicted from the asymptotic model (Bruschke & Advani 1992) for Newtonian fluids flowing 
transversely to homogeneous arrays of rods. This agreement exists for fibers of two different radii 
and nominal volume fractions ranging from 40 to 60%. The dimensionless expression of K/R~ was 
constant for different fiber radii with the same volume fraction. Therefore, the asymptotic model 
was an accurate predictor of  the permeability for flow transverse to homogeneous beds of aligned 
fibers. 

The measured permeability of heterogeneous arrays of fiber bundles was found to be up to 
25% higher than the measured permeability of the corresponding homogeneous arrays of 
solid rods. The asymptotic model, or other models designed to predict the permeability of 
homogeneous porous media, cannot predict the permeability of  the heterogeneous porous media, 
and attempts at prediction may produce errors in excess of  an order of  magnitude. This means 
that processing variables and predictions based on a measured global volume fraction will not be 
correct for the actual situation. A simple approximation based on the permeability computed at 
the nominal volume fraction, Nvf, and scaled by the tow volume fraction, Tvf, gives excellent 
agreement with the measured permeabilities of the arrays of fiber bundles, but needs extensive 
verification. 

The experiments with the fiber bundles also provided an opportunity to observe the flow behavior 
at the flow front. Flow induced void formation in the fiber bundles was observed, in support of 
the hypotheses used in the model of  Parnas & Phelan (1991). A void formed in a fiber bundle when 
the flow front met a fiber bundle and encompassed it, and the voids remained stable afterwards. 
Lower volume fractions inside the tows produced smaller voids, as well as higher permeabilities. 
The transient nature of  the flow front behavior has been modeled, and the model connects the 
microscopic behavior at the flow front to many observed anomalies in the macroscopic flow such 
as the difference between "unsaturated" and "saturated" permeability. The support for the void 
formation mechanism assumed in the micro-flow model provided by the fiber bundle experiments 
gives greater weight to the results generated by such models. 

The flow mobility of a strongly shear thinning fluid was measured in homogeneous arrays of 
rods and compared to the extended form of the asymptotic model. Although the differences 
between the model and experiment were as high as 30%, compared to differences of less than 10% 
for the case of a Newtonian fluid, such differences are probably reasonable in light of the additional 
experimental errors expected in the case of the shear thinning fluid. Once such experimental 
uncertainties are controlled, experiments in heterogeneous media with shear thinning fluids should 
prove useful for understanding power-law flow in realistic composite reinforcement geometries. 
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